The maximum degree of planar graphs I. Series-parallel graphs
نویسندگان
چکیده
We prove that the maximum degree ∆n of a random series-parallel graph with n vertices satisfies ∆n/ log n → c in probability, and E∆n ∼ c log n for a computable constant c > 0. The same result holds for outerplanar graphs.
منابع مشابه
On the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملAcyclically 3-Colorable Planar Graphs
In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...
متن کاملGraph Classes and the Complexity of the Graph Orientation Minimizing the Maximum Weighted Outdegree
Given an undirected graph with edge weights, we are asked to find an orientation, i.e., an assignment of a direction to each edge, so as to minimize the weighted maximum outdegree in the resulted directed graph. The problem is called MMO, and is a restricted variant of the well-known minimum makespan problem. As previous studies, it is shown that MMO is in P for trees, weak NP-hard for planar b...
متن کاملToughness and spanning trees in K4mf graphs
A k-tree is a tree with maximum degree at most k, and a k-walk is a closed walk with each vertex repeated at most k times. A k-walk can be obtained from a k-tree by visiting each edge of the k-tree twice. Jackson and Wormald conjectured in 1990 that for k ≥ 2, every 1 k−1 -tough connected graph contains a spanning k-walk. This conjecture is open even for planar graphs. We confirm this conjectur...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010